车牌号码测吉凶1588车牌号代表命运神算(1588测名)

本文向给大家分享1588测名相关知识,同时小编也会对测名字免费测名字1518进行解释,如果能解决您在1588测名方面面临的问题,请收藏关注本站,现在开始吧!

伽利略成为一个著名科学家的重要条件

测名起名
伽利略是伟大的意大利物理学家和天文学家,科学革命的先驱。历史上他首先在科学实验的基础上融会贯通了数学、物理学和天文学三门知识,扩大、加深并改变了人类对物质运动和宇宙的认识。为了证实和传播N.哥白尼的日心说,伽利略献出了毕生精力。由此,他晚年受到教会迫害,并被终身监禁。他以系统的实验和观察推翻了以亚里士多德为代表的、纯属思辨的传统的自然观,开创了以实验事实为根据并具有严密逻辑体系的近代科学。因此,他被称为“近代科学之父”。他的工作,为牛顿的理论体系的建立奠定了基础。
伽利略1564年2月15日生于比萨,父亲芬琴齐奥·伽利莱精通音乐理论和声学,著有《音乐对话》一书。1574年全家迁往佛罗伦萨。伽利略自幼受父亲的影响,对音乐、诗歌、绘画以及机械兴趣极浓;也像他父亲一样,不迷信权威。
1581年,伽利略17岁时,考入了比萨大学,比萨是伽利略出生的地方。他的父亲坚持要他学医,因为医学在16世纪的意大利被认为是大学生通往成功和最终致富这条路的最有效的第一步。
按照父亲的意愿,伽利略当了医科学生。比萨大学是所古老的大学,学校图书馆藏书丰富,这很合伽利略的心意,但是伽利略对医学并没有多大兴趣,他很少上课,一上课就对教授们教课的内容提出这样那样的疑问,使教授们难于回答,在教授们的眼里,伽利略是个很不招人喜欢的坏学生。不过,伽利略只是兴趣不在医学,他孜孜不倦地学习数学、物理学等自然科学,并且以怀疑的眼光看待那些自古以来被人们奉为经典的学说。
要知道,伽利略生活的时代,正是欧洲历史上著名的文艺复兴时代,而意大利又是文艺复兴的发源地。当时,意大利的许多大城市,如佛罗伦萨、热那亚和威尼斯,发展成东西方贸易的中心,建起了商号、手工作坊和最早的银行,出现了资本主义生产关系的萌芽。加上贸易往来的发达,印刷雀耐术的发明,新思想的传播比以往任何时候都更加迅速。于是,人们对千百年来束缚思想的宗教神学和传统教条开始产生了动摇。
一个偶然的机会,伽利略听了宫廷数学家玛窦·利奇的讲课。这位青年数学家渊博的学识,严密的逻辑性,特别是他在证明数学难题时的求证顷仿春方法,使伽利略深深着迷。他眼睛亮了,仿佛发现了一个神奇无比的世界,这就是他梦寐以求的数学王国!他兴奋极了,立即找到宫廷数学家玛窦·利奇,向他提出了许多百思不得其解的问题。
玛窦·利奇原是跟随托斯坎尼大公爵从佛罗伦萨来到比萨的,他给宫廷里的侍童讲数学,没有想到会有一个热心的听众,而且他提出的问题非常有趣,充分显示出超群的智慧和深厚的学识功底。
当玛窦·利奇听说伽利略是比萨大学医科学生时,不禁脱口而出:“啊,伽利略,你有天才,你会成为一个杰出的数学家的。”
伽利略的脸红了,他谈到自己对医学的厌倦,谈到父亲对他的期望,也倾诉了自己因为不能按照自己的意愿学习的苦恼。
“别泄气。”玛窦·利奇和蔼地说:“你努力自学吧,有什么困难,任何时候我都是你忠诚的朋友。”
听了玛窦·利奇的鼓励,伽利略越发刻苦钻研数学和物理学,他把从宫廷数学家那里借来的每一本书,都用心地阅读,像海绵吸水一样地吸收下来。但是,他并不是那种迷信书本的人,那些人们认为是真理的权威结论,在伽利略的脑子里常常带来意想不到的疑问,他常常为此而感到苦恼,陷入深深的思索之中。
有一次,伽利略信步来到他熟悉的比萨大教堂,他坐在一张长凳上,目光凝视着那雕刻精美的祭坛和拱形的廊柱,蓦地,教堂大厅中央的巨灯晃动起来,是修理房屋的工人在那里安装吊灯
这本来是件很平常的事,吊灯像钟摆一样晃动,在空中划出看不见的圆弧。可是大念,伽利略却像触了电一样,目不转睛地跟踪着摆动的吊灯,同时,他用右手按着左腕的脉,计算着吊灯摆动一次脉搏跳动的次数,以此计算吊灯摆动的时间。
这样计算的结果,伽利略发现了一个秘密,这就是吊灯摆一次的时间,不管圆弧大小,总是一样的。一开始,吊灯摆得很厉害,渐渐地,它慢了下来,可是,每摆动一次,脉搏跳动的次数是一样的。
伽利略的脑子里翻腾开了,他想,书本上明明写着这样的结论,摆经过一个短弧要比经过长弧快些,这是古希腊哲学家亚里斯多德的说法,谁也没有怀疑过。难道是自己的眼睛出了毛病,还是怎么回事
他像发了狂似的跑回大学宿舍,关起门来重复做这个试验。他找了不同长度的绳子、铁链,还有不知从哪里搞到的铁球、木球。在房顶上,在窗外的树枝上,着迷地一次又一次重复,用沙漏记下摆动的时间。最后,伽利略不得不大胆地得出这样的结论:亚里斯多德的结论是错误的,决定摆动周期的,是绳子的长度,和它末端的物体重量没有关系。而且,相同长度的摆绳,振动的周期是一样的。这,就是伽利略发现的摆的运动规律。
伽利略不用说多么高兴了。可是在当时,有谁会相信一个医科大学生的科学发现,何况他的结论是否定了大名鼎鼎的亚里斯多德的权威说法。
伽利略灰心极了,他离开了比萨大学回到佛罗伦萨。但是他选择的道路却是不可动摇的。
还在比萨大学就读时,伽利略因为看不惯哲学家们对科学的态度,无论在与人争辩中,还是私下讨论中,都直言不讳地表示出自己的这种观点。在很多时候,他会变得十分激动,提高嗓门、大声地与他的同行和演讲者进行辩论。
伽利略确实生性有点儿淘气,但是从根本上来说他是一个懂礼貌、遵守纪律的学生。他很受一些同学的喜爱,并因他的机智和热情而博得了很好的名声。然而,在数学和物理的问题上,他一点不怕把自己的观点清楚地亮出来。事实是伽利略在大学里辩论得太多了,以致获得了“辩论者”的雅号。
他争辩的焦点主要在于:光靠像希腊人那样坐在那里冥思苦想,是不能推动科学的进步的。亚里士多德在他的一生中没有进行过一次实验。他只是简单地靠运用逻辑的方法来得出结论。而伽利略辩驳说,光靠那样是不够的。亚里士多德的整个哲学体系是相互连接的,一个原理引出另一个原理,一个观点支撑着另一个观点。假如他的哲学体系中有某个部分错了,那就等于宣布他的所有哲学内容都有问题了。
伽利略处理问题的方式和亚里士多德正好相反。在比萨大学,他坚持认为,科学只能建立在实验的基础上。一个想法一开始是可以建立在灵感的基础上,但它只有靠实验来证明并被接受——这是一个在今天被认为理所当然的观点。
伽利略在大学里的大部分同事都不赞成他的观点。伽利略了解教会的态度,他非常聪明地把他的观点仅仅当作许多建议之一提出来争论,不让人们更注意到他的那些反亚里士多德的思想。这至少是伽利略在公开场合中所采用的方式……
1586年,他发明了浮力天平,并写出论文《小天平》。
1587年他带着关于固体重心计算法的论文到罗马大学学求见著名数学家和历法家C.克拉维乌斯教授,大受称赞和鼓励。克拉维乌斯回赠他罗马大学教授P.瓦拉的逻辑学讲义与自然哲学讲义,这对于他以后的工作大有帮助。
1588年他在佛罗伦萨研究院做了关于A.但丁《神曲》中炼狱图形构想的学术演讲,其文学与数学才华大受人们赞扬。次年发表了关于几种固体重心计算法的论文,其中包括若干静力学新定理。由于有这些成就,当年比萨大学便聘请他任教,讲授几何学与天文学。第二年他发现了摆线。当时比萨大学教材均为亚里士多德学派的学者所撰,书中充斥着神学与形而上学的教条。伽利略经常发表辛辣的反对意见,由此受到校内该学派的歧视和排挤。
1591年其父病逝,家庭负担加重,他便决定离开比萨。帕多瓦时期1592年伽利略转到帕多瓦大学任教。帕多瓦属于威尼斯公国,远离罗马,不受教廷直接控制,学术思想比较自由。在此良好气氛中,他经常参加校内外各种学术文化活动,与具有各种思想观点的同事论辩。此时他一面吸取前辈如N.F.塔尔塔利亚、G.B.贝内代蒂、F.科门迪诺等人的数学与力学研究成果,一面经常考察工厂、作坊、矿井和各项军用民用工程,广泛结交各行业的技术员工,帮他们解决技术难题,从中吸取生产技术知识和各种新经验,并得到启发。
在此时期,他深入而系统地研究了落体运动、抛射体运动、静力学、水力学以及一些土木建筑和军事建筑等;发现了惯性原理,研制了温度计和望远镜。
1597年,他收到J.开普勒赠阅的《神秘的宇宙》一书,开始相信日心说,承认地球有公转和自转两种运动。但这时他对柏拉图的圆运动最自然最完善的思想印象太深,以致对开普勒的行星椭圆轨道理论不感兴趣。1604年天空出现超新星,亮光持续18个月之久。他便趁机在威尼斯作几次科普演讲,宣传哥白尼学说。由于讲得精采动听,听众逐次增多,最后达千余人。
1609年7月,盛传一荷兰眼镜工人发明了供人玩赏的望远镜。他未见到实物,思考竟日后,用风琴管和凸凹透镜各一片制成一具望远镜,倍率为3,后又提高到9。他邀请威尼斯参议员到塔楼顶层用望远镜观看远景,观者无不惊喜万分。参议院随后决定他为帕多瓦大学的终身教授。1610年初,他又将望远镜放大率提高到33,用来观察日月星辰,新发现甚多,如月球表面高低不平,月球与其他行星所发的光都是太阳的反射光,水星有4颗卫星,银河原是无数发光体的总汇,土星有多变的椭圆外形等等,开辟了天文学的新天地。是年3月,出版了他的《星空信使》一书,震撼全欧。随后又发现金星盈亏与大小变化,这对日心说是一强有力的支持。伽利略日后回顾在帕多瓦的18年时,认为这是他一生中工作最开展、精神最舒畅的时期。事实上,这也是他一生中学术成就最多的时期。
托斯卡纳时期20年来伽利略在物理学和天文学研究上的丰硕成果,激起了他学术上的更大企求。为了取得充裕时间致力于科学研究,1610年春,他辞去大学教职,接受托斯卡纳公国大公聘请,担任宫廷首席数学家和哲学家的闲职与比萨大学首席数学教授的荣誉职位。
为了使科学免受教会干预,伽利略曾多次去罗马活动。1611年他第二次去罗马,目的在于赢得宗教、政治与学术界认可他在天文学上的发现。他在罗马受到包括教皇保罗五世和若干高级主教在内的上层人物的热情接待,并被林赛研究院接纳为院士。当时耶稣会的神父们承认他的观测事实,只是不同意他的解释。这年5月,在罗马大学的大会上,几个高职位的神父公开宣布了伽利略的天文学成就。
同年,他观察到太阳黑子及其运动,对比黑子的运动规律和圆运动的投影原理,论证了太阳黑子是在太阳表面上;他还发现了太阳有自转。1613年他发表了3篇讨论太阳黑子问题的通信稿。另外,1612年他又出版了《水中浮体对话集》一书。
1615年,一诡诈的教士集团和教会中许多与伽利略敌对的人联合攻击伽利略为哥白尼学说辩护的论点,控告他违反基督教义。他闻讯后,于是年冬第三次去罗马,力图挽回自己的声誉,企求教廷不因自己保持哥白尼观点而受到惩处,也不公开压制他宣传哥白尼学说,教廷默认了前一要求,但拒绝了后者。教皇保罗五世在1616年下达了著名的“1616年禁令”,禁止他以口头的或文字的形式保持、传授或捍卫日心说。
1624年,他第四次去罗马,希望故友新任教皇乌尔邦八世能够同情并理解他的意愿,以维护新兴科学的生机。他先后谒见6次,力图说明日心说可以与基督教教义相协调,说“圣经是教人如何进天国,而不是教人知道天体是如何运转的”;并且试图以此说服一些大主教,但毫无效果。乌尔邦八世坚持“1616年禁令”不变;只允许他写一部同时介绍日心说和地心说的书,但对两种学说的态度不得有所偏倚,而且都要写成数学假设性的。在这辛勤奔波的一年里,他研制成了一台显微镜,“可将苍蝇放大成母鸡一般。”
此后6年间,他撰写了《关于托勒密和哥白尼两大世界体系对话》一书,1630年他第5次到罗马,取得了此书的“出版许可证”。此书终于在1632年出版了。此书在表面上保持中立,但实际上却为哥白尼体系辩护,并多处对教皇和主教隐含嘲讽,远远超出了仅以数学假设进行讨论的范围。全书笔调诙谐,在意大利文学史上列为文学名著。

起名打分免费测试周易文化中华起名网免费姓名测名打分
[艾萨克·牛顿]
牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。
在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。
早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就拍灶告像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。
1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。
牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……
一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。
牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。
当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向袭明心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。
在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理辩培》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。
牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。
-----------------------------------------------------------------
-----------------------------------------------------------------
[伽利略]
主要贡献: 可分下列三个方面:
①力学 伽利略是第一个把实验引进力学的科学家,他利用实验和数学相结合的方法确定了一些重要的力学定律。1582年前后,他经过长久的实验观察和数学推算,得到了摆的等时性定律。接着在1585年因家庭经济困难辍学。离开比萨大学期间,他深入研究古希腊学者欧几里得、阿基米德等人的著作。他根据杠杆原理和浮力原理写出了第一篇题为《天平》的论文。不久又写了论文《论重力》,第一次揭示了重力和重心的实质并给出准确的数学表达式,因此声名大振。与此同时,他对亚里士多德的许多观点提出质疑。
在1589~1591年间,伽利略对落体运动作了细致的观察。从实验和理论上否定了统治千余年的亚里士多德关于“落体运动法则”确立了正确的“自由落体定律”,即在忽略空气阻力条件下,重量不同的球在下落时同时落地,下落的速度与重量无关。根据伽利略晚年的学生V.维维亚尼的记载,落体实验是在比萨斜塔上公开进行的,但在伽利略的著作中并未明确说明实验是在比萨斜塔上进行的。因此近年来对此存在争议。
伽利略对运动基本概念,包括重心、速度、加速度等都作了详尽研究并给出了严格的数学表达式。尤其是加速度概念的提出,在力学史上是一个里程碑。有了加速度的概念,力学中的动力学部分才能建立在科学基础之上,而在伽利略之前,只有静力学部分有定量的描述。
伽利略曾非正式地提出过惯性定律(见牛顿运动定律)和外力作用下物体的运动规律,这为牛顿正式提出运动第一、第二定律奠定了基础。在经典力学的创立上,伽利略可说是牛顿的先驱。
伽利略还提出过合力定律,抛射体运动规律,并确立了伽利略相对性原理. 伽利略在力学方面的贡献是多方面的。这在他晚年写出的力学著作《关于两门新科学的谈话和数学证明》中有详细的描述。在这本不朽著作中,除动力学外,还有不少关于材料力学的内容。例如,他阐述了关于梁的弯曲试验和理论分析,正确地断定梁的抗弯能力和几何尺寸的力学相似关系。他指出,对长度相似的圆柱形梁,抗弯力矩和半径立方成比例。他还分析过受集中载荷的简支梁,正确指出最大弯矩在载荷下,且与它到两支点的距离之积成比例。伽利略还对梁弯曲理论用于实践所应注意的问题进行了分析,指出工程结构的尺寸不能过大,因为它们会在自身重量作用下发生破坏。他根据实验得出,动物形体尺寸减小时,躯体的强度并不按比例减小。他说:“一只小狗也许可以在它背上驮两三只同样大小的狗,但我相信一匹马也许连一匹和它同样大小的马也驮不起。”
②天文学 他是利用望远镜观测天体取得大量成果的第一位科学家。这些成果包括:发现月球表面凹凸不平,木星有四个卫星(现称伽利略卫星),太阳黑子和太阳的自转,金星、木星的盈亏现象以及银河由无数恒星组成等。他用实验证实了哥白尼的“地动说”,彻底否定了统治千余年的亚里士多德和托勒密的“天动说”。
③哲学 他一生坚持与唯心论和教会的经院哲学作斗争,主张用具体的实验来认识自然规律,认为经验是理论知识的源泉。他不承认世界上有绝对真理和掌握真理的绝对权威,反对盲目迷信。他承认物质的客观性、多样性和宇宙的无限性,这些观点对发展唯物主义的哲学具有重要的意义。但由于历史的局限性,他强调只有可归纳为数量特征的物质属性才是客观存在的。
伽利略因为支持日心说入狱后,”放弃了”日心说,他说”考虑到种种阻碍,两点之间最短的不一定是直线”,正是因为他有这样的思想,暂时的放弃换得永远的支持,没有像布鲁诺那样去壮烈,但却可以为科学继续贡献自己的力量。
----------------------------------------------------------------
---------------------------------------------------------------
[约翰尼斯·开普勒]
行星运动定律的发明者约翰尼斯·开普勒于1571年出生在德国的威尔德斯达特镇,恰好是哥白尼发表《天体运行论》后的第二十八年。哥白尼在这部伟大著作中提出了行星绕太阳而不是绕地球运转的学说。开普勒就读于蒂宾根大学,1588年获得学士学位,三年后获得硕士学位。当时大多数科学家拒不接受哥白尼的日心说。在蒂宾根大学学习期间,他听到对日心学说所做的合乎逻辑的阐述,很快就相信了这一学说”
在蒂宾根大学毕业后,开普勒在格拉茨研究院当了几年教授。在此期间完成了他的第一部天文学著作(1596年)。虽然开普勒在该书中提出的学说完全错误,但却从中非常清楚地显露出他的数学才能和富有创见性的思想,于是伟大的天文学家泰修·布拉赫邀请他去布拉格附近的天文台给自己当助手。开普勒接受了这一邀请,1600年1月加入了泰修的行列。泰修翌年去世。开普勒在这几个月来给人留下了非常美好的印象,不久圣罗马皇帝鲁道夫就委任他为接替泰修的皇家数学家。开普勒在余生一直就任此职。
作为泰修·布拉赫的接班人,开普勒认真地研究了泰修多年对行星进行仔细观察所做的大量记录。泰修是望远镜发明以前的最后一位伟大的天文学家,也是世界上前所未有的最仔细、最准确的观察家,因此他的记录具有十分重大的价值。开普勒认为通过对泰修的记录做仔细的数学分析可以确定哪个行星运动学说是正确的:哥白尼日心说,古老的托勒密地心说,或许是泰修本人提出的第三种学说。但是经过多年煞费苦心的数学计算,开普勒发现泰修的观察与这种三学说都不符合,他的希望破灭了。
最终开普勒认识到了所存在的问题:他与泰修、拉格茨·哥白尼以及所有的经典天文学家一样,都假定行星轨道是由圆或复合国组成的。但是实际上行星轨道不是圆形而是椭圆形。
就在找到基本的解决办法后,开普勒仍不得不花费数月的时间来进行复杂而冗长的计算,以证实他的学说与泰修的观察相符合。他在1609年发表的伟大著作《新天文学》中提出了他的前两个行星运动定律。行星运动第一定律认为每个行星都在一个椭圆形的轨道上绕太阳运转,而太阳位于这个椭圆轨道的一个焦点上。行星运动第二定律认为行星运行离太阳越近则运行就越快,行星的速度以这样的方式变化:行星与太阳之间的连线在等时间内扫过的面积相等。十年后开普勒发表了他的行星运动第三定律:行星距离太阳越远,它的运转周期越长;运转周期的平方与到太阳之间距离的立方成正比。
开普勒定律对行星绕太阳运动做了一个基本完整、正确的描述,解决了天文学的一个基本问题。这个问题的答案曾使甚至象哥白尼、伽利略这样的天才都感到迷惑不解。当时开普勒没能说明按其规律在轨道上运行的原因,到17世纪后期才由艾萨克·牛顿阐明清楚。牛顿曾说过:“如果说我比别人看得远些的话,是因为我站在巨人的肩膀上。”开普勒无疑是他所指的巨人之一。
开普勒对天文学的贡献几乎可以和哥白尼相媲美。事实上从某些方面来看,开普勒的成就甚至给人留下了更深刻的印象。他更富于创新精神。他所面临的数学困难相当巨大。数学在当时远不如今天这样发达,没有计算机来减轻开普勒的计算负担。
从开普勒取得的成果的重要性来看,令人感到惊奇的是他的成果起初差一点被忽略,甚至差点被伽利略这样如此伟大的科学家所忽略(伽利略对开普勒定律的忽视特别令人感到惊奇,因为他俩之间有书信往来,而且开普勒的成果会有助于伽利略驳斥托勒密学说)。如果说其他人迟迟不能赏识开普勒成果的重大意义的话,他本人是会谅解这一点的。他在一次抑制不住巨大喜悦时写道:“我沉湎在神圣的狂喜之中……我的书已经完稿。它不是会被我的同时代人读到就会被我的子孙后代读到——这是无所谓的事。它也许需要足足等上一百年才会有一个读者,正如上帝等了6000年才有一个人理解他的作品。”
但是经过几十年的历程,开普勒定律的意义在科学界逐渐明朗起来。实际上在17世纪晚期,有一个支持牛顿学说的主要论点认为开普勒定律可以从牛顿学说中推导出来,反过来说只要有牛顿运动定律,也能从开普勒定律中精确地推导出牛顿引力定律。但是这需要更先进的数学技术,而在开普勒时代则没有这样的技术、就是在技术落后的情况下,开普勒也能以其敏锐的洞察力判断出行星运动受来自太阳的引力的控制。
开普勒除了发明行星运动定律外,还对天文学做出了许多小的贡献。他也对光学做出了重要的贡献。不幸的是他在晚年为私事而感到忧伤。当时德国开始陷入“三十年战争”的大混乱之中,很少有人能躲进世外桃源。
他遇到的一个问题是领取薪水。圣罗马皇帝即使在较兴隆的时期都是怏怏不乐地支付薪水。在战乱时期,开普勒的薪水被一拖再拖,得不到及时的支付。开普勒结过两次婚,有十二个孩子,这样的经济困难的确很严重。另一个问题是他的母亲在1620年由于行巫术而被捕。开普勒花费了大量的时间设法使母亲在不受拷打的情况下获得释放,他终于达到了目的。
开普勒于1630年在巴伐利亚州雷根斯堡市去世。在“三十年战争”的动乱中,他的坟墓很快遭毁。但是业已证明他的行星运动定律是一座比任何石碑都更为久伫长存的纪念碑。
开普勒
找定了目标
伽利略的望远镜为哥白尼体系提供的论据是令人信服的,但毕竟还是间接的,只有定性意义。因为人们“坐地观天”,能够直接观察到的只是行星在恒星天球上垂直于视线方向的位移,而不是它们在空间的“真实”运动。要直接论证哥白尼体系,必须探求行星的“真实轨道”,并加以严格考证。
另外,哥白尼首创的日心体系还残留着托勒玫体系的若干成分,没有完全摆脱经院哲学思想的束缚,认为天体只能作简单的匀速圆周运动。因此,为了解释行星运行中存在较小的不均匀性,仍然保留了托勒玫的一部分本轮和偏心圆的设计。哥白尼的日心宇宙理论无疑是正确的,但他的体系是有缺陷的,很快就被推翻了。
竟哥白尼事业之功、揭开行星运动之谜的是不朽的德国天文学家约翰·开普勒 (1571~1630)。
开普勒出生在德国南部的瓦尔城。他的一生颠沛流离,是在宗教斗争(天主教和新教)情势中渡过的。开普勒原是个新教徒,从学校毕业后,进入新教的神学院——杜宾根大学攻读,本想将来当个神学者,但后来却对数学和天文学发生浓厚兴趣和爱好。
杜宾根大学的天文学教授米海尔·麦斯特林 (1550~1631)是赞同哥白尼学说的。他在公开的教学中讲授托勒玫体系,暗地里却对最亲近的学生宣传哥白尼体系。开普勒是深受麦斯特林赏识的学生之一,他从这位老师那里接受哥白尼学说后,就成为新学说的热烈拥护者。他称哥白尼是个天才横溢的自由思想家,对日心体系予以很高评价。
开普勒能言善辩,喜欢在各种集会上发表见解。因而引起学院领导机构——教会的警惕,认为开普勒是个“危险”分子。学院毕业的学生都去当神甫,开普勒则未获许可。他只得移居奥地利,靠麦斯特林的一点帮助在格拉茨高等学校中担任数学和天文学讲师及编制当时盛行的占星历书。
占星术是一门伪科学,开普勒不信这一套。他不相信天上那些星辰的运行和地上人类生息的祸福命运会有什么相干!他曾为从事此项工作自我解嘲说:“作为女儿的占星术若不为天文学母亲挣面包,母亲便要挨饿了。”
从那时起,开普勒开始从事研究他毕生最感兴趣,也是他尔后获得最大成就的问题了。
宇宙模型
开普勒平生爱好数学。他也和古希腊学者们一样,十分重视数的作用,总想在自然界寻找数量的规律性 (早期希腊学者称为和谐)。规律愈简单,从数学上看就愈好,因而在他看来就愈接近自然。他之所以信奉哥白尼学说,正是由于日心体系在数学上显得更简单更和谐。他说:“我从灵魂深处证明它是真实的,我以难以相信的欢乐心情去欣赏它的美。”他接受哥白尼体系后就专心探求隐藏在行星中的数量关系。他深信上帝是依照完美的数学原则创造世界的。
开普勒在他早期所著的《神秘的宇宙》(1597)一书里设计一个有趣的、由许多有规则的几何形体构成的宇宙模型。开普勒试图解释为什么行星的数目恰好是六颗,并用数学描述所观测到的各个行星轨道大小之间的关系。他发现六个行星的轨道恰好同五种有规则的正多面体相联系。这些不同的几何形体,一个套一个,每个都按照某种神圣的和深奥的原则确定一个轨道的大小。若土星轨道在一个正六面体的外接球上,木星轨道便在这个正六面体的内切球上;确定木星轨道的球内接一个正四面体,火星轨道便在这个正四面体的内切球上;火星轨道所在的球再内接一个正十二面体,便可确定地球轨道……照此交替内接 (或内切)的步骤,确定地球轨道的球内接一个正二十面体,这个正二十面体的内切球决定金星轨道的大小;在金星轨道所在的球内接一个正八面体,水星轨道便落在这个正八面体的内切球上。
开普勒也因循自亚里斯多德、托勒玫直至哥白尼以来的固有见解,没有跳出圆形轨道的框框。
这种设计得到的各个球的半径比率与各个行星轨道大小的已知值相当吻合。有规则的正多面体是具有相同平面的对称体。这种具有对称平面的多面体只能作出五个,因此开普勒确信太阳系的行星只有六颗。
这一“发现”给开普勒带来极大喜悦,他写道:“我从这个发现所得到的极度喜悦是无法用语言来表达的。我不怕任何麻烦,我不辞辛劳、日以继夜地进行计算,直到我能够看到是否我的假设符合哥白尼的轨道,或者是否我的喜悦要落空”。
开普勒模型的数学关系纵然如此美妙,但若干年后开普勒分析第谷的观测数据、制定行星运行表时,它们却毫无用处。开普勒就摒弃了它。
1598年奥地利暴发宗教冲突。天主教徒用凶残的惩罚来恫吓开普勒。他被迫离开奥地利,逃到匈牙利隐蔽起来。不久,他接到在布拉格路德福国王宫庭内任职的第谷的邀请,去协助整理观测资料和编制新星表。开普勒欣然接受,1600年携眷来到布拉格,任第谷的助手。
具有讽刺意味的是,这两位学者,一个始终是哥白尼体系的反对者,另一个则是该体系的衷心拥护者。但他们毕竟撮合在一起了,并且戏剧般地成为天文学史上合作的光辉典范!
这是开普勒最快乐的时代,他不再为生活而发愁,专心从事天文学研究。然而很不幸,他们相处没有多久,第谷便于第二年(1601)去世。开普勒遭到一次很沉重的打击。这位被称为“星学之王”的天文观测家把他毕生积累的大量精确的观测资料全部留给了开普勒。他生前曾多次告诫开普勒:一定要尊重观测事实!
开普勒继任第谷的工作,任务是编制一张同第谷记录中的成千个数据相协调的行星运行表。虽然他得到“皇家数理家”的头衔,但宫庭却不发给他应得俸禄,他不得不再从事星相术来糊口。
第谷的观测记录到了开普勒手中,竟发挥意想不到的惊人作用,使开普勒的工作变得严肃起来。他发现自己的得意杰作——开普勒宇宙模型,在分析第谷的观测数据、制订行星运行表时毫无用处,不得不把它摒弃。不论是哥白尼体系、托勒玫体系还是第谷体系,没有一个能与第谷的精确观测相符合。这就使他决心查明理论与观测不一致的原因,全力揭开行星运动之谜。为此,开普勒决定把天体空间当做实际空间来研究,用观测手段探求行星的
“真实”轨道。
巧夺天工
开普勒要解决的问题包括两方面:第一,用什么方法测定行星(包括地球)运动的“真实”轨道,如同观测者能从“天外”看行星绕太阳运行一样;第二,分析行星运动遵循什么样的数学定律。
如今已很少有人想到,开普勒如何从行星的使人眼花缭乱的视行中推出它们的“真实”轨道?只要想到人们永远不可能看到行星的真实运动,而只能从运动着的地球上看到它们在天空的什么方向,就知道问题困难了。倘使行星所作的是简单的匀速圆周运动,从地球上看去,还比较容易地察觉这种运动该是怎样的;可是实际情形比这要复杂得多,而且地球本身同样是以某种未知方式绕太阳运动。这就使问题变得无比复杂和困难了。
开普勒用一个绝妙方法把这种杂乱无章的现象理出一个完整清楚的头绪来。他同哥白尼一样,敏锐地领悟到,“要研究天,最好先懂得地”,他也把着眼点放在地球上,力图先摸清地球本身的运动,然后再研究行星的运动。
但是这样做的时候,并没有排除行星存在的必要性。假如天空中只有太阳和恒星而没有别的行星存在,那要找出地球的“真实”轨道,还是办不到的。因为在那种情形下,除了太阳的周年视行外,其他就没有什么东西可以从经验上来确定。它虽然也能帮助我们确定地球绕太阳运行的方式,譬如地球向径 (日地连线)在一个相对恒星是静止的平面(黄道面)上运动,这种运动的角速度在一年中呈现有规律的变化……。但是,光知道这些并没有多大用处,关键是必须确定地球同太阳之间的距离在一年中是怎样变化的?只有当人们弄清这种变化后,才能确定地球轨道的真实形状及它的运行方式。
其实,开普勒所用的方法就是普通的三角测量法。
在大地测量工作中,常常要测定那些由于某种自然障碍而无法直接到达的目标的距离。假定需要测定A地到对岸塔C的距离,因A、C两地被大河阻隔,无法直接去测量这段距离的长度。为了解决这个困难,观测者可在河的这岸另择一点B,AB的距离是可以直接丈量的。这段经过选定的、已知其长度的线段AB,用测量学的术语来说,叫做“基线”。基线确定后,可在它的两端用测角仪分别测定A、B两角的大小。于是,在三角形ABC中,已知两角大小和它们所夹的边 (基线)长,三角形的其他角和边,就可以计算出来。应用这个简单方法可以求得无法达到的目标的距离。
实际上,天文学家们也是用这个方法来测定天体距离的。只不过这个问题对天文学家说来更加困难些,因为天文学家们要布设一条“基线”不那么容易。开普勒所遇到的正是这个困难。
开普勒要测定地球(在其轨道上)与太阳的距离。在这里,太阳好比是上述例证中的A地,地球则是河对岸的那座塔C。为了布设“基线”,还需要另找一个定点 B。可是,在行星系统里,除了太阳是唯一“静止”的中心天体外,再也找不出第二个这样的“定点”。这要由开普勒另行觅取。
我们设想在地球轨道平面的某处有一盏明亮的天灯M,它有足够的明亮度,并且永远悬挂在那里,以使地球上的观测者在每年任何日期都能看到它;又假定这灯距太阳比地球还要远些。如果具备这些条件,它就成了我们所需要的第个定点。太阳与灯的连线就是我们所要布设的“基线”。借助这样一盏灯,就能用下述办法来测定地球的轨道。
譬如,每年都会有这样一个时刻,地球 (E)正好在太阳(S)和灯(M)的连线上。这时,从地球上来看灯,我们的视线EM就会同SM(太阳~灯)重合,我们可以把后者在天空中的位置 (它指向某一恒星)记录下来。
以后,在另一个时刻,地球运行到轨道上的另一位置E’,这时它同太阳和那盏灯的位置形成一个三角形SE’M。
在这个三角形中,SM边是事先选定的“基线”;e角的大小可以从地球上同时观测太阳和灯M来确定;S角就是地球向径(SE”)同基线 SM所夹的角,其大小也可以通过对恒星的观测来确定。有了这些已知条件,便可以得知三角形SE’M中SE”的距离,或者说地球E’相对于基线SM的位置完全可确定。
因此,只要在纸上任意画一条基线SM,凭着我们观测到的e和S的角度,就可以作出三角形SE’M来。我们可以在一年中经常这样做,每次都会在纸上得到地球E’对于那条基线SM的不同位置,并且给它们逐个注上日期,然后把这些点连成曲线……。这样,我们就从经验上确定了地球的轨道。虽然其大小还是相对的,然而却是“真实”的。
可是从哪里去找这盏灯呢?要知道行星系统里除了中心天体——太阳外,所有能看得见的客体都不是静止的,它们的运动在细节上都是未知的。开普勒毫不费事地找到这盏灯。它就是火星,一盏天上的“红灯”。
人们不禁要问:火星不也是在运动吗?
一点不错,火星确是在运动。然而聪明的开普勒想出一条“动中取静”的妙计。那时人们对火星的视运动已经知道得非常清楚,它绕太阳运行的周期 (一个“火星年”)是精密地测定了的。既然它是在闭合的轨道上运行,就总会有这么一个时刻,即太阳、地球和火星处在同一直线上,而且每隔一个“火星年”之后,它总又要回到天空的同一位置上来。因此,火星虽然是动的,但在某些特定的时刻,SM总是表现为同一条基线;而地球呢?在这些时刻,它会到达自己的不同位置。这时,对太阳和火星同时进行观测,就成为开普勒测定地球轨道的手段;火星这时就起着所设想的那盏灯的作用。
“天公斗巧乃如此,令人一步千徘徊”。开普勒就是这样以令人赞叹的巧妙手法把地球轨道的形状测了出来。地球的轨道一经测定,地球及其向径
(SE)在任何时刻的实际位置和距离变化,也就成为已知条件。反过来,以地球向径作为基线,从观测数据中推求其他行星的轨道和运动,对开普勒来说不再是太困难的事了!
8分误差改变整个天文学
行星轨道从经验中算出来了,下一步要弄清楚的问题是行星运动究竟遵循什么数学定律?
乍看,第一个问题解决后,搞清楚第二个问题该是轻而易举的事。然而你马上就会看到,要从经验的数据里推出运动定律要比解决第一个问题艰巨得多。
开普勒首先需要了解行星轨道所描出的曲线的几何特征是什么?为此,他必须先作某种假设,然后把它用到一大堆数字上去试试,看它是否能同第谷的数据吻合。如果不是,再找另外的假设进行探索,直到合乎观测事实为止。
开普勒的目光首先盯住火星。这是因为第谷的数据中对火星的观测占有最大篇幅。恰好,就是这个行星的运行与哥白尼理论出入最大。开普勒按照传统的偏心圆来探求火星的轨道。他作了大量尝试,每次都要进行艰巨的计算。在大约进行了70次的试探之后,开普勒才算找到一个与事实相当符合的方案。使他感到惊愕的是,当超出他所用数据的范围继续试探时,他又发现与第谷的其他数据不符。火星还是不听他的摆布……。
开普勒诙谐地写道:“我预备征服战神马尔斯,把它俘虏到我的星表中来,我已为它准备了枷锁。但是我忽然感到胜利毫无把握……,这个星空中狡黠的家伙,出乎意料地扯断我给它戴上的用方程连成的枷锁,从星表的囚笼中冲出来,逃往自由的宇宙空间去了。”
开普勒计算出来的火星位置和第谷数据之间相差8分,即1.133度 (这个角